Electron Orbitals

Quantum Numbers specify the properties of atomic orbitals and the properties of the electrons in orbitals **Orbitals** are regions inside an energy level where the probability of finding an electron is very high.

Principal Quantum Number (<i>n</i>)	Sublevels in main energy level	Number of orbitals (n²)	Number of electrons per sublevel	Number of electrons per main energy
	(n sublevels)			level (2n ²)
1	S	1	2	2
2	S	1	2	8
	р	3	6	
3	S	1	2	18
	р	3	6	
	d	5	10	
4	S	1	2	32
	р	3	6	
	d	5	10	
	f	7	14	

- A. Principal Quantum Number (n)
 - 1. Indicates the main energy levels occupied by the electron
 - 2. Values of n are positive integers
 - a. n=1 is closest to the nucleus, and lowest in energy
 - 3. The number of orbitals possible per energy level (or "shell") is equal to n²
- B. Angular Momentum Quantum Number
 - 1. Indicates the shape of the orbital
 - 2. Number of orbital shapes = n
 - a. Shapes are designated s, p, d, f
- C. Spin Quantum Number
 - 1. Indicates the fundamental spin states of an electron in an orbital
 - 2. Two possible values for spin, +1/2, -1/2
 - 3. A single orbital can contain only two electrons, which must have opposite spin

Electron Configurations

- 1. Aufbau Principle
 - a. An electron occupies the lowest-energy orbital that can receive it
- 2. Hund's Rule
 - a. Orbitals of equal energy are each occupied by one electron before any orbital is occupied by a second electron, and all electrons in singly occupied orbitals must have the same spin
- 3. Octet
 - a. Highest energy level *s* and *p* electrons are filled (8 electrons)
 - b. Characteristic of noble gases, Group 18
- 4. Noble gas configuration
 - a. Outer main energy level fully occupied, usually (except for He) by eight electrons
 - b. This configuration has extra stability

Element	Configuration notation	Orbital notation	Noble gas notation
Lithium	1s ² 2s ¹	<u>1s 2s 2p</u>	[He]2s ¹
Beryllium	1s ² 2s ²	<u>1s 2s 2p</u>	[He]2s ²
Boron	1s ² 2s ² 2p ¹	1s 2s 2p	[He]2s ² p ¹
Carbon	1s ² 2s ² 2p ²	1s 2s 2p	[He]2s ² p ²
Nitrogen	1s ² 2s ² 2p ³	1s 2s 2p	[He]2s ² p ³
Oxygen	1s ² 2s ² 2p ⁴	<u>1s 2s 2p</u> —	[He]2s ² p ⁴
Fluorine	1s ² 2s ² 2p ⁵	1s 2s 2p	[He]2s ² p ⁵
Neon	1s ² 2s ² 2p ⁶	1s 2s 2p	[He]2s ² p ⁶